Q1.Which of these pieces of apparatus has the lowest percentage uncertainty in the measurement shown?

A Volume of $25 \mathrm{~cm}^{3}$ measured with a burette with an uncertainty of $\pm 0.1 \mathrm{~cm}^{3}$.

B Volume of $25 \mathrm{~cm}^{3}$ measured with a measuring cylinder with an uncertainty of $\pm 0.5 \mathrm{~cm}^{3}$.

C Mass of 0.150 g measured with a balance with an uncertainty of $\pm 0.001 \mathrm{~g}$.

D Temperature change of $23.2^{\circ} \mathrm{C}$ measured with a thermometer with an uncertainty of $\pm 0.1^{\circ} \mathrm{C}$.

(Total 1 mark)

Q2.A student is provided with a $5.00 \mathrm{~cm}^{3}$ sample of $1.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. The student is asked to devise a method to prepare a hydrochloric acid solution with a concentration of $5.00 \times$ $10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ by diluting the sample with water.

Which of these is the correct volume of water that should be added?

A $\quad 45.0 \mathrm{~cm}^{3}$
0
B $\quad 95.0 \mathrm{~cm}^{3}$

C $\quad 100 \mathrm{~cm}^{3}$

D $\quad 995 \mathrm{~cm}^{3}$

(Total 1 mark)

Q3. Which of the following contains the most chloride ions?

A $10 \mathrm{~cm}^{3}$ of $3.30 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ aluminium chloride solution
B $20 \mathrm{~cm}^{3}$ of $5.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ calcium chloride solution

C $30 \mathrm{~cm}^{3}$ of $3.30 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid

D $40 \mathrm{~cm}^{3}$ of $2.50 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ sodium chloride solution \bigcirc
(Total 1 mark)

Q4. Which of these samples of gas contains the largest number of molecules? The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

A $\quad 5.0 \times 10^{-4} \mathrm{~m}^{3}$ at $1.0 \times 10^{6} \mathrm{~Pa}$ and 300 K

B $\quad 4.0 \times 10^{-3} \mathrm{~m}^{3}$ at $2.0 \times 10^{5} \mathrm{~Pa}$ and 400 K

C $\quad 3.0 \times 10^{1} \mathrm{dm}^{3}$ at $3.0 \times 10^{4} \mathrm{~Pa}$ and 500 K \bigcirc

D $\quad 2.0 \times 10^{2} \mathrm{dm}^{3}$ at $4.0 \times 10^{3} \mathrm{~Pa}$ and 600 K

Q5.What is the total volume of gas remaining after $20 \mathrm{~cm}^{3}$ ethane are burned completely in $100 \mathrm{~cm}^{3}$ oxygen? All volumes are measured at the same pressure and the same temperature, which is above $100^{\circ} \mathrm{C}$.

$$
\mathrm{C}_{2} \mathrm{H}_{6}+3^{\frac{1}{2}} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

A $40 \mathrm{~cm}^{3}$

B $\quad 100 \mathrm{~cm}^{3}$

C $\quad 120 \mathrm{~cm}^{3}$

D $\quad 130 \mathrm{~cm}^{3}$

(Total 1 mark)

Q6.A sample of 2.18 g of oxygen gas has a volume of $1870 \mathrm{~cm}^{3}$ at a pressure of 101 kPa .

What is the temperature of the gas?
The gas constant is $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

A $\quad 167 \mathrm{~K}$

B $\quad 334 \mathrm{~K}$

C $\quad 668 \mathrm{~K}$

D $\quad 334000 \mathrm{~K}$
\bigcirc
(Total 1 mark)

Q7.An ester is hydrolysed as shown by the following equation.

$$
\mathrm{RCOOR}^{\prime}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{RCOOH}+\mathrm{R}^{\prime} \mathrm{OH}
$$

What is the percentage yield of RCOOH when 0.50 g of $\mathrm{RCOOH}\left(M_{r}=100\right)$ is obtained from 1.0 g of RCOOR $^{\prime}\left(M_{r}=150\right)$?

(Total 1 mark)

Q8.A saturated aqueous solution of magnesium hydroxide contains $1.17 \times 10^{-3} \mathrm{~g}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ in $100 \mathrm{~cm}^{3}$ of solution. In this solution, the magnesium hydroxide is fully dissociated into ions.

What is the concentration of $\mathrm{Mg}^{2+}(\mathrm{aq})$ ions in this solution?

A $\quad 2.82 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$

B $\quad 2.01 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

C $\quad 2.82 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

D $\quad 2.01 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
\bigcirc
(Total 1 mark)

Q9.Magnesium reacts with hydrochloric acid according to the following equation.

$$
\mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

A student calculated the minimum volume of $2.56 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid required to react with an excess of magnesium to form 5.46 g of magnesium chloride ($M_{t}=95.3$).

Which of the following uses the correct standard form and the appropriate number of significant figures to give the correct result of the calculation?

A $\quad 4.476 \times 10^{-2} \mathrm{dm}^{3}$ \square

B $4.48 \times 10^{-2} \mathrm{dm}^{3}$

C $\quad 4.50 \times 10^{-2} \mathrm{dm}^{3}$

D $\quad 44.8 \times 10^{-3} \mathrm{dm}^{3}$

(Total 1 mark)

Q10.In an experiment to identify a Group 2 metal $(\mathrm{X}), 0.102 \mathrm{~g}$ of X reacts with an excess of aqueous hydrochloric acid according to the following equation.

$$
\mathrm{X}+2 \mathrm{HCl} \longrightarrow \mathrm{XCl}_{2}+\mathrm{H}_{2}
$$

The volume of hydrogen gas given off is $65 \mathrm{~cm}^{3}$ at 99 kPa pressure and 303 K .
The gas constant is $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
Which is X ?

A Barium

B Calcium

C Magnesium

D Strontium

Q11.The following equation represents the oxidation of vanadium(IV) ions by manganate(VII) ions in acid solution.

$$
5 \mathrm{~V}^{4+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow 5 \mathrm{~V}^{5+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

What volume of $0.020 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$ solution is required to oxidise completely a solution containing 0.010 mol of vanadium(IV) ions?

A $\quad 10 \mathrm{~cm}^{3}$ \square

B $\quad 25 \mathrm{~cm}^{3}$

C $\quad 50 \mathrm{~cm}^{3}$

D $\quad 100 \mathrm{~cm}^{3} \quad \bigcirc$

Q12.The removal of silicon dioxide with limestone in the Blast Furnace can be represented by the following equation.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{SiO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CaSiO}_{3}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The minimum mass of calcium carbonate needed to remove 1.00 tonne (1000 kg) of silicon dioxide is

A 0.46 tonne
B 0.60 tonne
C $\quad 1.67$ tonne
D 2.18 tonne

Q13. The removal of silicon dioxide with limestone in the Blast Furnace can be represented by the following equation.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{SiO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CaSiO}_{3}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The volume of carbon dioxide, measured at 298 K and $1.01 \times 10^{5} \mathrm{~Pa}$, formed in this reaction during the removal of 1.00 tonne (1000 kg) of silicon dioxide is

A $\quad 24.5 \mathrm{dm}^{3}$

B $408 \mathrm{dm}^{3}$

C $\quad 24.5 \mathrm{~m}^{3}$

D $\quad 408 \mathrm{~m}^{3}$

Q14.Ethanoyl chloride reacts with methylbenzene forming compound \mathbf{X} according to the equation below.

X
If the experimental yield is 40.0%, the mass in grams of $\mathbf{X}\left(M_{r}=134.0\right)$ formed from 18.4 g of methylbenzene ($M_{\mathrm{r}}=92.0$) is

A 26.8
B 16.1
C 10.7
D 7.4

Q15. When 0.10 g of propane was burned the quantity of heat evolved was 5.0 kJ . The enthalpy of combustion of propane in $\mathrm{kJ} \mathrm{mol}^{-1}$ is

A -800

B -1500

C -2200

D - 2900
(Total 1 mark)

Q16.25.0 cm^{3} of ethanedioic acid required $22.5 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide solution for complete neutralisation.

The concentration of ethanedioic acid is
A $\quad 0.0225 \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad 0.0450 \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 0.0560 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 0.0900 \mathrm{~mol} \mathrm{dm}^{-3}$
(Total 1 mark)

Q17. Silver oxide, $\mathrm{Ag}_{2} \mathrm{O}$, can be reduced by passing hydrogen gas over the heated oxide. The maximum mass of silver that could be obtained from 2.32 g of silver oxide is

A $\quad 2.02 \mathrm{~g}$
B $\quad 2.06 \mathrm{~g}$
C $\quad 2.12 \mathrm{~g}$
D $\quad 2.16 \mathrm{~g}$

Q18.In a reaction which gave a 27.0% yield, 5.00 g of methylbenzene were converted into the explosive 2,4,6-trinitromethylbenzene (TNT) ($M_{r}=227.0$). The mass of TNT formed was

A $\quad 1.35 \mathrm{~g}$
B $\quad 3.33 \mathrm{~g}$

C $\quad 3.65 \mathrm{~g}$

D $\quad 12.34 \mathrm{~g}$
(Total 1 mark)

Q19.A 0.0720 g sample of reducing agent \mathbf{R} was dissolved in water and acidified with an excess of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. The resulting solution was found to react with exactly $18.0 \mathrm{~cm}^{3}$ of a $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of KMnO_{4}.

In this reaction, 5 mol of \mathbf{R} react with 3 mol of KMnO_{4}. The M_{r} of \mathbf{R} is
A 120
B 167

C 240

D 333
(Total 1 mark)

Q20.The percentage by mass of carbon is 83.3% in

A propane.
B butane.
C pentane.
D hexane.
(Total 1 mark)

Q21. Propanoic acid reacts with methanol in the presence of a small amount of concentrated sulphuric acid. The empirical formula of the ester formed is

A $\mathrm{CH}_{2} \mathrm{O}$
B $\quad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
C $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
D $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
(Total 1 mark)

Q22.This question is about the following reaction scheme which shows the preparation of polymer \mathbf{P}.

If 1.0 kg of benzene gave 0.98 kg of J , the percentage yield of J was
A 64
B 66
C 68
D 70

Q23.A particular sample of iron ore contains 85% by mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}\left(M_{r}=159.6\right)$ and no other iron compound. The maximum mass of iron that could be extracted from 1.0 tonne of this ore is

A 0.59 tonne

B 0.66 tonne

C $\quad 0.75$ tonne

C 0.85 tonne

Q24.An equation for the incomplete combustion of butane in oxygen is

$$
\mathrm{C}_{4} \mathrm{H}_{10}+4^{\frac{1}{2}} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}
$$

The volume in dm^{3} of oxygen at 295 K and 100 kPa required to burn 0.1 mol of butane to form steam and carbon monoxide only is

A 8.6

B 11

C 12

C 16
(Total 1 mark)

Q25.The relative molecular mass $\left(M_{r}\right)$ of benzene-1,4-dicarboxylic acid is
A 164
B 166

C 168

C 170
(Total 1 mark)

Q26.Sodium hydrogencarbonate decomposes on heating as shown by the equation below.

$$
2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The volume of carbon dioxide, measured at 298 K and 101 kPa , obtained by heating 0.0500 mol of sodium hydrogencarbonate is

A $\quad 613 \mathrm{~cm}^{3}$
B $\quad 1226 \mathrm{~cm}^{3}$

C $613 \mathrm{dm}^{3}$
D $1226 \mathrm{dm}^{3}$
(Total 1 mark)

Q27.Use the information below to answer this question.
A saturated solution of magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, contains 0.1166 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ in 10.00 dm^{3} of solution. In this solution the magnesium hydroxide is fully dissociated into ions.

Which one of the following is the concentration of $\mathrm{Mg}^{2+}(\mathrm{aq})$ ions in the saturated solution?
A $\quad 2.82 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$

B $\quad 2.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
C $2.82 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
D $2.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
(Total 1 mark)

Q28.Butan-1-ol was converted into butyl propanoate by reaction with an excess of propanoic acid. In the reaction, 6.0 g of the alcohol gave 7.4 g of the ester. The percentage yield of ester was

A 57
B 70
C 75
D 81
(Total 1 mark)

Q29.This question is about the reaction between propanone and an excess of ethane-1,2-diol, the equation for which is given below.

In a typical procedure, a mixture of 1.00 g of propanone, 5.00 g of ethane-1,2-diol and 0.100 g of benzenesulphonic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$, is heated under reflux in an inert solvent. Benzenesulphonic acid is a strong acid.

If 1.00 g of propanone was vapourised at $100^{\circ} \mathrm{C}$ and 100 kPa pressure, the volume in m^{3} of gas formed would be

A 31.0
B 8.31
C 0.534
D 5.34×10^{-4}

Q30.This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta \boldsymbol{H}_{\boldsymbol{t}}{ }^{\boldsymbol{\theta}} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\boldsymbol{s}^{\boldsymbol{\theta}} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains $0.0500 \mathrm{~mol}^{\text {of } \mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol} \text { of } \mathrm{O}_{2}(\mathrm{~g}) \text { and }}$ $0.0700 \mathrm{~mol}^{\text {of } \mathrm{SO}_{3}(\mathrm{~g}) \text {. }}$

At equilibrium in the same vessel of volume $1.80 \mathrm{dm}^{3}$ under altered conditions, the reaction mixture contains $0.0700 \mathrm{~mol}^{2} \mathrm{SO}_{3}(\mathrm{~g}), 0.0500 \mathrm{~mol}$ of $\mathrm{SO}_{2}(\mathrm{~g})$ and $0.0900 \mathrm{~mol}^{\circ} \mathrm{O}_{2}(\mathrm{~g})$ at a total pressure of 623 kPa . The temperature in the equilibrium vessel is

A $\quad 307^{\circ} \mathrm{C}$
B $\quad 596 \mathrm{~K}$
C $\quad 337^{\circ} \mathrm{C}$
D $\quad 642 \mathrm{~K}$
(Total 1 mark)

Q31. The percentage of copper in a copper(II) salt can be determined by using a thiosulphate titration. 0.305 g of a copper(II) salt was dissolved in water and added to an excess of potassium iodide solution, liberating iodine according to the following equation:

$$
2 \mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cul}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{aq})
$$

The iodine liberated required $24.5 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium thiosulphate:

$$
2 \mathrm{~S}_{2} \mathrm{O}^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}(\mathrm{aq})
$$

The percentage of copper, by mass, in the copper(II) salt is
A 64.2

B 51.0

C 48.4

D $\quad 25.5$
(Total 1 mark)

Q32.On heating, magnesium reacts vigorously with element \mathbf{X} to produce compound \mathbf{Y}. An aqueous solution of \mathbf{Y}, when treated with aqueous silver nitrate, gives a white precipitate that is readily soluble in dilute aqueous ammonia. What is the minimum mass of \mathbf{X} that is needed to react completely with 4.05 g of magnesium?

A $\quad 11.83 \mathrm{~g}$
B $\quad 5.92 \mathrm{~g}$
C $\quad 5.33 \mathrm{~g}$
D $\quad 2.67 \mathrm{~g}$
(Total 1 mark)

Q33.1,3-dinitrobenzene can be prepared by heating nitrobenzene with a mixture of fuming nitric acid and concentrated sulphuric acid. The reaction can be represented by the following equation.

If the yield of the reaction is 55%, the mass of 1,3-dinitrobenzene produced from 12.30 g of nitrobenzene is

A $\quad 16.90 \mathrm{~g}$

B $\quad 16.80 \mathrm{~g}$
C $\quad 9.30 \mathrm{~g}$

D $\quad 9.24 \mathrm{~g}$
(Total 1 mark)

Q34. Which one of the following contains the smallest number of moles of carbon dioxide gas?
A $\quad 2.65 \mathrm{~g}$
B $\quad 0.0150 \mathrm{~m}^{3}$ at 1000 K and 33.0 kPa
C $\quad 1.50 \mathrm{dm}^{3}$ at $327^{\circ} \mathrm{C}$ and 200 kPa
D $\quad 1500 \mathrm{~cm}^{3}$ at 300 K and 100 kPa
(Total 1 mark)

Q35.Which one of the following compounds contains the smallest percentage, by mass, of oxygen?
A $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
B $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{NH}_{2}$
C COS
D $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Al}(\mathrm{OH})_{2}$

Q36. When one mole of ammonia is heated to a high temperature, 50% dissociates according to the following equilibrium.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

What is the total number of moles of gas present in the equilibrium mixture?
A 1.5
B 2.0
C 2.5
D 3.0

Q37.Aqueous $\mathrm{C}_{2} \mathrm{O}^{2-}$ ions react with MnO_{4}^{-}ions in acidic solution according to the equation

$$
5 \mathrm{C}_{2} \mathrm{O}^{2-}+2 \mathrm{MnO}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

Under the same conditions Fe^{2+} ions also react with MnO_{4}^{-}ions. How many moles of MnO_{4}^{-}ions are required to react exactly with one mole of $\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$?

A 0.4
B 0.6
C 2.5
D 7.5

Q38.On complete combustion, 0.0150 mol of an organic acid produced $735 \mathrm{~cm}^{3}$ of carbon dioxide (measured at 101 kPa and 298 K). The same amount of acid required $15.0 \mathrm{~cm}^{3}$ of 2.00 M sodium hydroxide solution for neutralisation. Which one of the following could be the formula of the acid?

A HCOOH
B $\mathrm{CH}_{3} \mathrm{COOH}$
C HOOCCOH
D $\mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(Total 1 mark)

Q39.An excess of methanol was mixed with 12 g of ethanoic acid and an acid catalyst. At equilibrium the mixture contained 8 g of methyl ethanoate. The percentage yield of ester present was

A 11
B 20
C 54
D 67
(Total 1 mark)

Q40. Which one of the following samples of gas, when sealed into a vessel of volume $0.10 \mathrm{~m}^{3}$, is at the highest pressure?

A 1.6 g of helium (He) at 100 K
B $\quad 1.6 \mathrm{~g}$ of methane $\left(\mathrm{CH}_{4}\right)$ at 100 K
C 1.6 g of oxygen $\left(\mathrm{O}_{2}\right)$ at 600 K
D 1.6 g of sulphur dioxide $\left(\mathrm{SO}_{2}\right)$ at 1200 K
(Total 1 mark)

Q41.In a titration, 0.52 g of a diprotic acid, $\mathrm{H}_{2} \mathrm{X}$, reacts exactly with $100 \mathrm{~cm}^{3}$ of 0.10 M sodium hydroxide.

$$
\mathrm{H}_{2} \mathrm{X}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{X}+2 \mathrm{H}_{2} \mathrm{O}
$$

The acid could be
A ethanedioic
B propanedioic
C butanedioic
D pentanedioic
(Total 1 mark)

Q42.0.00125 mol of a compound was heated with an excess of a solution of potassium hydroxide and the ammonia evolved required $17.0 \mathrm{~cm}^{3}$ of 0.220 M hydrochloric acid for neutralisation. Which one of the following could be the formula of this compound?

A $\mathrm{BF}_{3} \mathrm{NH}_{3}$
B $\quad \mathrm{VCl}_{3}\left(\mathrm{NH}_{3}\right)_{3}$
C $\mathrm{CrCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$
D $\left[\mathrm{Be}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$

Q43. What is the volume occupied by 10.8 g of the freon $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ at 100 kPa and 273 K ?
A $\quad 2.02 \mathrm{dm}^{3}$
B $\quad 2.05 \mathrm{dm}^{3}$
C $\quad 2.02 \mathrm{~cm}^{3}$
D $\quad 2.05 \mathrm{~cm}^{3}$
(Total 1 mark)

Q44. Which one of the following contains the greatest number of moles of methanol? (The Avogadro number (L) is 6.02×10^{23}, the relative molecular mass $\left(M_{r}\right)$ of methanol is 32 .)

A $\quad 6.6 \times 10^{22}$ molecules
B 3.3 g of methanol
C $2.5 \times 10^{-3} \mathrm{~m}^{3}$ of methanol vapour at 300 K and 100 kPa
D $\quad 70 \mathrm{~cm}^{3}$ of 1.5 M aqueous methanol
(Total 1 mark)

Q45.An alkane contains 30 hydrogen atoms per molecule. Its empirical formula is
A $\mathrm{C}_{6} \mathrm{H}_{15}$
B $\quad \mathrm{C}_{7} \mathrm{H}_{15}$
C $\quad \mathrm{C}_{14} \mathrm{H}_{30}$
D $\mathrm{C}_{15} \mathrm{H}_{30}$

Q46. Hydrolysis of the ester, $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, produces ethanoic acid. In an experiment, 2.04 g of the ester was used and 0.90 g of ethanoic acid was produced. The percentage yield of ethanoic acid was:

A 44
B 59

C 75
D 90
(Total 1 mark)

Q47. Which one of the following samples of gas occupies the largest volume?
A 1.0 g of ozone $\left(\mathrm{O}_{3}\right)$ at 100 kPa and 300 K
B $\quad 1.0 \mathrm{~g}$ of oxygen at 100 kPa and 300 K
C 1.0 g of water vapour at 250 kPa and 450 K
D $\quad 1.0 \mathrm{~g}$ of methane at 333 kPa and 500 K
(Total 1 mark)

Q48.Copper(II) ions can be estimated volumetrically by the addition of an excess of potassium iodide followed by titration of the liberated iodine with sodium thiosulphate solution. The following equations apply:

$$
\begin{array}{rll}
2 \mathrm{Cu}^{2}+4 \mathrm{I}^{-} & \rightarrow & 2 \mathrm{CuI}+\mathrm{I}_{2} \\
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} & \rightarrow & \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}
\end{array}
$$

What volume (in cm^{3}) of $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ would be required to react with the iodine produced from 1.249 g of $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{M}_{\mathrm{r}} 249.7$)?

A 10
B 25
C 50
D 100
(Total 1 mark)

Q49.A "drink-driving" offence is committed if the blood alcohol level of a driver is over 80 mg of ethanol per $100 \mathrm{~cm}^{3}$ of blood.

What is the concentration (in $\mathrm{mol} \mathrm{dm}{ }^{3}$) of ethanol if there are 80 mg of ethanol per100 cm^{3} of blood?

A 0.0017
B 0.017
C 0.080
D $\quad 0.80$
(Total 1 mark)

Q50.When vanadium reacts with chlorine at $400^{\circ} \mathrm{C}$, a brown compound is obtained. When an aqueous solution containing 0.193 g of this compound was treated with aqueous silver nitrate all the chlorine in the compound was precipitated as silver chloride. The mass of silver chloride (AgCl) produced was 0.574 g . Which one of the following could be the formula of the brown compound?

A VCl

B $\quad \mathrm{VCl}_{2}$

C $\quad \mathrm{VCl}_{3}$

D $\quad \mathrm{VCl}_{4}$
(Total 1 mark)

Q51.The oxidation of ethanedioate (oxalate) ions by manganate(VII) ions can be represented by the half equations:

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \\
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

What volume (in cm^{3}) of $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ is required to oxidise completely a solution containing 0.02 mol of ethanedioate ions?

A 25

B 40

C 250

D 400
(Total 1 mark)

Q52. $\mathrm{CH}_{2} \mathrm{O}$ is the empirical formula of
A methanol
B methyl methanoate
C ethane-1,2-diol
D butanal

Q53.When TiCl_{4} is reduced with hydrogen under certain conditions, a new compound is produced which contains 68.9% chlorine by mass. Which one of the following could be the formula of the new compound?

A $\mathrm{TiH}_{2} \mathrm{Cl}_{2}$
B TiCl
C TiCl_{2}
D TiCl_{3}
(Total 1 mark)

Q54.A brand of fluoride tablets, recommended by a dentist to strengthen the enamel on teeth, contains $2.2 \times$ 10^{-3} sodium fluoride per tablet. The total mass of fluoride ion present in 100 tablets is

A $\quad 2.2 \times 10^{-3} \times \frac{19}{42} \times 100$
B $\quad 2.2 \times 10^{-3} \times \frac{19}{23} \times 100$
C $\quad 2.2 \times 10^{-3} \times \frac{9}{20} \times 100$
D $\frac{100 \times 19}{2.2 \times 10^{-3}}$
(Total 1 mark)

